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ABSTRACT 

The parameter estimation of the Marshall– Olkin extended Burr III (MOEBIII) distribution, which is                                  

a generalization of the Burr III distribution is considered. The maximum likelihood (ML) estimation of the parameters of the 

MOEBIII distribution is introduced by Al-Saiari et al. (2016). However, ML is often used to estimate the parameters of the 

Burr III distribution; this method is very sensitive to the presence of outliers in the data.  

This paper presents M-estimation as a robust method, based on the quantile function to estimate the parameters of 

the MOEBIII distribution for complete data with outliers. A simulation study and a real data are used to illustrate the 

performance of M-estimator and ML estimator. The numerical results show that the M-estimator, generally is appropriate 

than the ML, in terms of the bias and mean square error when there are outliers in the data. 

KEYWORDS: Marshall– Olkin Extended Burr III, Maximum Likelihood, M-estimator, Robust estimator, Outliers 

1. INTRODUCTION 

In (1942) Burr introduced a family of distributions, in which, the Burr type III distribution is one of this family. The 

Burr type III distribution covers a wider region in the skewness and kurtosis plane, including several distributions such as 

the gamma family, Weibull family, lognormal family, and the bell-shaped beta distributions, see Tadikamalla (1980). It has 

been widely used as a model in many areas such as environmental, economics and reliability analysis. 

Marshall and Olkin in (1997) proposed a new family of survival functions based on adding a parameter to obtain              

a family of distributions, this distribution is called Marshall –Olkin extended distribution.  

Using the survival function of any distribution  F̅(x), the survival function of the new distribution G̅(x; α)  can be 

defined as follows: 

𝐺̅(𝑥; 𝛼) =
𝛼𝐹(𝑥)

1−𝛼̅𝐹(𝑥)
, −∞ < 𝑥 < ∞, 0 < 𝛼 < ∞                                                                                                          (1) 

  where   𝛼 = 1 − 𝛼̅  is an additional positive parameter and they have called the tilt parameter [See Marshall and 

Olkin (2007)]. The cumulative distribution (cdf) and the probability density function (pdf) for the new distribution are given 

respectively by: 

𝐺(𝑥; 𝛼) =
𝐹(𝑥)

1−𝛼̅𝐹(𝑥)
= 1 −  

𝛼𝐹(𝑥)

1−𝛼̅𝐹(𝑥)
,                                                                                                                            (2) 

𝑔(𝑥, 𝛼) =
𝛼𝑓(𝑥)

[1−𝛼̅𝐹(𝑥)]2                                                                                                                                                  (3) 
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There have been various studies reported in the literature dealing with the parameter estimation methods for Burr 

III distribution. Lindsay et al. (1996) compared between the Burr type III distribution with four parameters and the Weibull 

distribution using the diameter data. Shao (2000) investigated the constrained ML method to estimate the parameters of the 

Burr type III distribution for toxicity data. Shao et al. (2008) used of the extended Burr type III distribution under the re-

parameterization method in low-flow frequency analysis, where the lower tail of the distribution is of interest and used three 

methods of estimation, method of moments, probability-weighted moments, and maximum likelihood method to estimate 

the unknown parameters of the distribution. 

An alternative robust estimation method based on M-estimators and AM-estimators estimation method for the 

parameters of  Burr III distribution have been proposed by Wang and Wen Lee (2010, 2011 and 2014) respectively as follows:  

In (2010) they used the M- estimator to estimate the parameters of the extended three- parameter Burr type III 

distribution for complete data with outliers and compared it with ML and least squares methods. In (2011) they introduced 

M- estimator and ML and AM- estimator, when the data is asymmetric to estimate the parameters of the Burr type III 

distribution for complete data with outliers and compared the results. Also, in (2014) they discussed the M-estimator for 

estimating the Burr type III parameters with outliers and compared it with ML and least squares methods. 

However, there is not much work concerning MOEBIII distribution. The parameters of MOEBIII distribution was 

estimated by using ML estimation method by Al-Saiari et al. (2016). However, it is well established that, in the presence of 

outliers in the data, the traditional methods do not provide reliable estimators. Therefore, robust estimation methods can be 

used for estimating the parameters of the MOEBIII distribution, if the data contains outliers. 

This paper is organized as follows: In Section 2, the Marshall– Olkin extended Burr III (MOEBIII) distribution is 

described. In Section 3, the maximum likelihood and the robust M-estimator are introduced. A simulation study and a real 

data to illustrate the performance of  ML estimator and M-estimator are illustrated in Sections 4 and 5, respectively. Finally, 

concluding remarks are given in Section 6. 

2. MARSHALL-OLKIN EXTENDED BURR III DISTRIBUTION  

The cumulative distribution (cdf) and the probability density function (pdf) for a two shape parameters 𝑐 > 0, 

𝑘 > 0 Burr type III distribution are given by: 

𝐹(𝑥; 𝑐, 𝑘) = (1 + 𝑥−𝑐)−𝑘  ;  𝑥 ≥ 0                                                                                                                            (4) 

and 

𝑓(𝑥; 𝑐, 𝑘) = 𝑘 𝑐 𝑥−(𝑐+1)(1 + 𝑥−𝑐)−(𝑘+1);  𝑥 ≥ 0                                                                                                    (5) 

where c, k are shape parameters. 

Substituting (4) and (5) in (2) and (3) the cdf and the pdf of MOEBIII are given respectively as: 

𝐺(𝑥; 𝛼, 𝑐, 𝑘) =
(1+𝑥−𝑐)−𝑘

[1−(1−𝛼)[1−(1+𝑥−𝑐)−𝑘]]
; 𝑥 ≥ 0                                                                                                           (6) 
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and 

𝑔(𝑥; 𝛼, 𝑐, 𝑘) =
𝛼 𝑘 𝑐 𝑥−(𝑐+1)(1+𝑥−𝑐)−(𝑘+1)

[1−(1−𝛼)[1−(1+𝑥−𝑐)−𝑘]]
2 ; 𝑥 ≥ 0                                                                                                        (7) 

where, 𝛼 is called tilt parameter, when  α = 1, the original distribution i.e., Burr type III distribution with two 

parameters is obtained. 

MOEBIII distribution is more flexible than the BurrIII distribution, because of the presence of the additional shape 

parameter. Figure 1 shows the plots of pdf for MOEBIII distribution for some values of the parameters.                                       

[See Al-Saiari.et.al. (2016)] 

 
     Figure 1: Plot of the PDF of the MOEBIII distribution. (I) α = 0.8, k=0.1, c=2, 

(II) α = 3, k=0.1, c=2, (III) α = 0.8, k = 5, c = 2, (IV) α = 3, k = 5, c = 2 

 

The qth quantile of the MOEBIII is given by 

 𝑥𝑞 = 𝐺−1(𝑞) = [[(
1−𝑞

𝛼𝑞
) + 1]

1
𝑘⁄

− 1]

−1
𝑐⁄

;  0 ≤ 𝑞 ≤ 1                                                                                          (8) 

3. PARAMETERS ESTIMATION 

In this section, ML estimation method to estimate the parameters of the MOEBIII distribution is first reviewed.   

The robust estimators based on the M-estimation method given by Huber (1964) are introduced. 

3.1 The Maximum Likelihood Method 

Suppose that 𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a random sample of size n from MOEBIII (𝛼, 𝑐, 𝑘), then the log-likelihood 

function 𝑙(𝛼, 𝑐, 𝑘) is given by: 

𝑙(𝛼, 𝑐, 𝑘) = 𝑛(𝑙𝑜𝑔𝛼 + 𝑙𝑜𝑔𝑐 + 𝑙𝑜𝑔𝑘) − (𝑐 + 1) ∑ 𝑙𝑜𝑔(𝑥𝑖) − (𝑘 + 1)𝑛
𝑖=1 ∑ 𝑙𝑜𝑔(1 + 𝑥𝑖

−𝑐) − 2 ∑ 1 − (1 −𝑛
𝑖=1

𝑛
𝑖=1

                                      𝛼) [1 − (1 + 𝑥𝑖
−𝑐)−𝑘] = 0                                                                                                                   (9) 
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To obtain ML estimates of the parameters, equation (9) is maximized by taking the partial derivatives with respect     

to 𝛼, 𝑐 𝑎𝑛𝑑 𝑘 setting it to 0 as follows: 

𝜕𝑙(𝛼,𝑐,𝑘)

𝜕𝛼
=

𝑛

𝛼̂
− 2 ∑

1−(1+𝑥𝑖
−𝑐̂)

−𝑘̂

1−(1−𝛼̂)[1−(1+𝑥𝑖
−𝑐̂)

−𝑘̂
]

𝑛
𝑖=1 = 0                                                                                                     (10) 

𝜕𝑙(𝛼,𝑐,𝑘)

𝜕𝑐
=

𝑛

𝑐̂
− ∑ 𝑙𝑜𝑔(𝑥𝑖)

𝑛
𝑖=1 + (𝑘̂ + 1) ∑

𝑥𝑖
−𝑐̂𝑙𝑜𝑔(𝑥𝑖)

(1+𝑥𝑖
−𝑐̂)

𝑛
𝑖=1 −  

                2(1 − 𝛼̂)𝑘̂ ∑
𝑥𝑖

−𝑐̂𝑙𝑜𝑔(𝑥𝑖)(1+𝑥𝑖
−𝑐̂)

−(𝑘̂+1)

1−(1−𝛼̂)[1−(1+𝑥𝑖
−𝑐̂)

−𝑘̂
]

𝑛
𝑖=1 = 0                                                                                                         (11) 

 𝜕(𝛼,𝑐,𝑘)

𝜕𝑘
=

𝑛

𝑘̂
− ∑ 𝑙𝑜𝑔(1 + 𝑥𝑖

−𝑐̂)𝑛
𝑖=1 + 2(1 − 𝛼̂) ∑

(1+𝑥𝑖
−𝑐̂)

−𝑘̂
𝑙𝑜𝑔(1+𝑥𝑖

−𝑐̂)

1−(1−𝛼̂)[1−(1+𝑥𝑖
−𝑐̂)

−𝑘̂
]

𝑛
𝑖=1 = 0                                                     (12) 

Since equations (10) - (12) are non-linear equations, it cannot be solved analytically; numerical methods should be 

used to obtain the ML estimates. 

3.2 M- Estimation Method 

The robust M-estimator method is used to estimate the parameters of the MOEBIII distribution from a sample of 

𝑛 observations(𝑥1 , 𝑥2,  … , 𝑥𝑛) = 𝑥𝑇. As follows: 

𝑥𝑖 =  𝑓𝑖(𝜃) + 𝑢𝑖; 𝑖 = 1, … , 𝑛                                                                                                                                 (13) 

where  𝜃𝑇 = (𝛼, 𝑐, 𝑘),  𝑓𝑖(𝜃)  is the quantile function of the MOEBIII distribution and  𝑢𝑖   is the error term with 

mean equals zero and variance  equals   𝜎2. Gilchrist (2000) introduced the robust property based on the quantile function. 

For the robust regression method, it is necessary to scale the invariant error, as follows: 

 𝑒𝑖 =
𝑢𝑖

𝑠
                                                                                                                                                                   (14) 

where    𝑠 =
𝑀𝐴𝐷(𝑢)

0.6745
  and   𝑀𝐴𝐷(𝑢) = 𝑀𝐴𝐷(𝑢1 , 𝑢2 , … , 𝑢𝑛) = 𝑀𝑒𝑑𝑖𝑎𝑛{|𝑢 − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑢)|} 

[See Hampel et.al. (1986)] 

The M-estimator method for estimating the MOEBIII parameters is defined by minimizing the objective function 

of all invariant errors,  𝜌(𝑒𝑖)  as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜌(𝑒𝑖)
𝑛
𝑖=1                                                                                                                                              (15) 

To estimate the three unknown parameters of the MOEBIII distribution, a simple comparison among two different 

ρ objective functions is used. The selected objective functions areTukey’s Bisquare and Huber’s weight  [See Huber (1981)]. 

Tukey’s Bisquare objective function is derived as: 

𝜌(𝑒𝑖) = {

𝑎2

6
(1 − (1 − (

𝑒𝑖

𝑎
)

2

)
3

 𝑖𝑓 |𝑒𝑖| ≤ 𝑎

1

6
𝑎2                               𝑖𝑓 |𝑒𝑖| > 𝑎

                                                                                                          (16) 
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with the derivative 

𝜓(𝑒𝑖) = {𝑒𝑖
((1 − (

𝑒𝑖

𝑎
)

2

)

2

     𝑖𝑓 |𝑒𝑖| ≤ 𝑎

0                              𝑖𝑓 |𝑒𝑖| > 𝑎

  

where   𝑎= 4.685 and  𝑒𝑖   is the scale invariant error in (14). 

Huber’s weight objective function is derived as: 

𝜌(𝑒𝑖) = {

1

2
(𝑒𝑖)

2               𝑖𝑓 |𝑒𝑖| < 𝑎

𝑎|𝑒𝑖| −
1

2
𝑎2      𝑖𝑓 |𝑒𝑖| ≥ 𝑎

                                                                                                                           (17) 

with the derivative 

𝜓(𝑒𝑖) = {
𝑒𝑖                                  𝑖𝑓 |𝑒𝑖| < 𝑎

𝑎 𝑠𝑖𝑔𝑛 𝑒𝑖              𝑖𝑓 |𝑒𝑖| ≥ 𝑎
  

where    𝑎= 1.345 and   𝑒𝑖     is the scale invariant error in  (14). 

The estimators of the parameters can be obtained for the two selected objective functions are derived by 

differentiating (15) with respect to 𝛼, 𝑐 𝑎𝑛𝑑 𝑘respectively, and equating to zero. Then, the simultaneous equations can be 

obtained, as follows: 

∑ 𝜓(𝑒𝑖)
𝜕𝑓𝑖

𝜕𝛼

𝑛
𝑖=1 = ∑ 𝜓(𝑒𝑖) ×

−1

𝑐̂𝑘̂

𝑛
𝑖=1 [[(

1−𝑞

𝛼̂𝑞
) + 1]

1

𝑘̂ − 1]

−(
1

𝑐̂
+1)

  

                             × [(
1−𝑞

𝛼̂𝑞
) + 1]

1 

𝑘̂
−1

[
−(1−𝑞)

𝛼̂2𝑞
] = 0                                                                                                      (18) 

∑ 𝜓(𝑒𝑖)
𝜕𝑓𝑖

𝜕𝑐

𝑛
𝑖=1 = ∑ 𝜓(𝑒𝑖) ×

1

𝑐̂2
𝑛
𝑖=1 [[(

1−𝑞

𝛼̂𝑞
) + 1]

1

𝑘̂ − 1]

−
1

𝑐̂

  

                           × 𝑙𝑜𝑔 [[(
1−𝑞

𝛼̂𝑞
) + 1]

1

𝑘̂ − 1] = 0                                                                                                      (19) 

∑ 𝜓(𝑒𝑖)
𝜕𝑓𝑖

𝜕𝑘

𝑛
𝑖=1 = ∑ 𝜓(𝑒𝑖) ×

1

𝑐̂𝑘̂2
[[(

1−𝑞

𝛼̂𝑞
) + 1]

1

𝑘̂ − 1]

−(
1

𝑐̂
+1)

𝑛
𝑖=1   

                                  × [(
1−𝑞

𝛼̂𝑞
) + 1]

1

𝑘̂ 𝑙𝑜𝑔 [(
1−𝑞

𝛼̂𝑞
) + 1] = 0                                                                                     (20) 

Since equations (18)-(20) are non-linear equations, numerical iterative methods can be used to obtain the M-

estimators for the parameters 𝛼, 𝑐 𝑎𝑛𝑑 𝑘. 

4. SIMULATION STUDY 

In this section, a simulation study to compare the performance of the ML and the robust M-estimators is carried out 

in the presence of outliers. The data were generated from the MOEBIII distribution for several different values of  
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 𝜃𝑇 = α, c and k.  

The steps of simulation study are given as: 

 Step 1. Generate n random samples 𝑤1 , 𝑤2 , … , 𝑤𝑛  from uniform distribution ∼U (0, 1). 

 Step 2 Generate a random sample 𝑥𝑖 from the MOEBIII distribution for specified values of 𝛼, 𝑐 𝑎𝑛𝑑 𝑘 distribution 

using equation (8) for different values of   𝑖, 𝑖 = 1,2, … , 𝑛. 

 Step 3. Select different sample sizes, 𝑛 = 20, 40,100 to represent the small, moderate and the large sample sizes, 

respectively. 

 Step 4. The outliers are generated for each random sample from the uniform distribution as U (𝑋̅+ 4S, 𝑋̅ + 7S), 

where 𝑋̅  the samples mean of is   𝑋 = (𝑥1 , 𝑥2,  … , 𝑥𝑛)  and S is the sample standard deviation of X. The outliers 

are generated by shifting the largest observations to the right in the X direction. For the small sample size (n = 20) 

one outlier is taken, for the moderate sample size (n = 40) two outliers are taken and for the large sample size (n = 

100) five outliers are taken. [See Wei and Fung (1999)]. 

 Step 5. Different initial parameter values for α, c and k are taken. 

 Step 6. Obtain the ML estimates using equations (10) - (12). 

 Step 7. Obtain the M- estimates using equations (18)-(20). 

 Step 8. calculate the bias and mean square errors (MSE) of the estimates derived in the steps 6 and 7 using the 

following formulae: 

𝐵𝑖𝑎𝑠(𝜃) = 𝐸(𝜃) − 𝜃  

𝑀𝑆𝐸 =
1

𝑁
∑ (𝜃 − 𝜃)

2𝑁
𝑖=1   

where,𝐸(𝜃) =
1

𝑁
∑ 𝜃𝑁

𝑖=1  

 Step 9. Repeat steps (1-7), N=1000 time. 

The results in Tables 1-3 clearly indicates that, the robust estimator based on Tukey’s Bisquare function has the smallest 

bias and the smallest MSE in most of the cases are with outliers. In addition, the robust estimator based on Huber’s function 

outperforms ML estimator in terms of bias and MSE when the data set contains outliers. For example, it can be seen from 

Tables 1-3 that, the largest difference of the bias for parameter c arises in Table 1 for the cases (0.2, 2.0, 0.2) and (0.3, 2.0, 

0.1). Similarly, one can observe superiority of the robust estimators in terms of bias and MSE in Tables 1-3. Moreover, in 

Table 3 it can be noted that when the number of outliers increase, the ML estimators increase when compared to the robust 

estimators. It can be seen that, bias and the MSE values are very large for the ML estimators. In general, it is advised to use 

the MOEBIII distribution instead of using classical methods when there are potential outliers in the data. 
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Table 1: The Bias and MSE (in Parenthesis) for n=20 with One Outlier 

Parameter α 

Parameters ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.2695 (0.1485) 0.2735 (0.1057) 0.2653 (0.1086) 

(0.2,2.0,0.2) 0.2207 (0.1146) -0.0855 (0.0267) 0.1357 (0.0732) 

(0.3,2.0,0.3) 0.1097 (0.1038) - 0.1758 (0.0419) -0.0239 (0.0528) 

(0.3,2.0,0.1) 0.2470 (0.1225) -0.0606 (0.0502) 0.1884 (0.0926) 

(0.8,2.0,0.1) -0.1333 (0.0742) -0.0279 (0.0043) -0.1647 (0.0682) 

Parameter c 

 ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) -0.3315 (6.2178) -0.47301 (0.7879) -0.0661 (0.2523) 

(0.2,2.0,0.2) 1.3283 (41.1222 ) 0.2037 (9.3444) -0.1857 (0.6362) 

(0.3,2.0,0.3) -0.2962 (5.4922) -0.3118 (1.5008 ) -0.62901 (1.0165 ) 

(0.3,2.0,0.1) 1.1688 (32.7146) 0.9089 (11.9765) 0.3605 (5.2050) 

(0.8,2.0,0.1) 0.0501 (11.1791) -0.3109 (3.2648 ) -0.7966 (0.8742) 

Parameter k 

 ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.6996(2.4519) -0.0316 (0.0019) 0.1019 (0.2715) 

(0.2,2.0,0.2) 0.0545 (0.0638) -0.0772 (0.0122) 0.0601 (0.0151) 

(0.3,2.0,0.3) 0.4316 (1.0632) 0.0856 (0.2068) 0.3009 (0.6877) 

(0.3,2.0,0.1) 0.0418 (0.0296) -0.0083 (0.0086) 0.0167 (0.0078) 

(0.8,2.0,0.1) 0.0427 (0.0159) -0.0279 (0.0043) 0.03561 (0.0055) 

 

Table 2: The Bias and MSE (in Parenthesis) for n= 40 with 2 Outliers 

Parameter α 

parameters ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.1162 (0.0319) 0.0876 (0.0293) 0.1421 (0.0218) 

(0.2,2,0.2) 0.3606 (0.1803) 0.0022 (0.0556) 0.1483 (0.0615) 

(0.3,2,0.3) 0.1445 (0.0904) -0.0557 (0.0474) 0.0327 (0.0527) 

(0.3,2.0,0.1) 0.2459 (0.1024) -0.0031 (0.0651) 0.1805 (0.0729) 

(0.8,2.0,0.1) -0.4973 (0.3170) -0.1038 (0.0552 ) -0.3035 (0.1660) 

Parameter c 

 ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.2669 (11.7336) -1.2805 (1.7296) -0.9759 (1.1687) 

(0.2,2,0.2) -1.2267 (1.7687) -0.6979 (0.7243) -0.5429 (0.4339) 

(0.3,2,0.3) -0.3030 (1.2793) -0.9431 (1.1152) -0.8058 (1.2048) 

(0.3,2.0,0.1) 0.3482 (11.8764) -0.4349 (3.1586) -0.3435 (1.6942) 
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Table 2: Contd., 

(0.8,2.0,0.1) -0.4489 (1.9466) -0.8765 (1.6520) -0.6734 (1.1204) 

Parameter k 

 ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.1368 (0.0356) 0.0386 (0.0083) 0.1030 (0.0202) 

(0.2,2,0.2) 0.10367 (0.0286) -0.0399 (0.0089) 0.0076 (0.0027) 

(0.3,2,0.3) 0.1186 (0.1028) -0.1806 (0.0472) 0.0555 (0.0554) 

(0.3,2.0,0.1) 0.0768 (0.0269) 0.0162 (0.0208) 0.0555 (0.0095) 

(0.8,2.0,0.1) 0.1057 (0.0435) -0.0074 (0.0054) 0.0998 (0.0217) 

 

Table 3: The Bias and MSE (in Parenthesis) for n=100 with 5 Outliers 

Parameter α 

Parameters ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.2608 (0.1478) -0.0199 (0.0004) 0.1808 (0.0696) 

(0.2,2.0,0.2) 0.1126 (0.0530) -0.0453 (0.0375) 0.0683 (0.0239) 

(0.3,2.0,0.3) 0.1207 (0.0581) -0.0991 (0.0319) 0.04755 (0.0410) 

(0.3,2.0,0.1) 0.2354 (0.0928) 0.0067 (0.0442) 0.1290 (0.0397) 

(0.8,2.0,0.1) -0.4048 (0.2387) -0.0191 (0.0205) -0.0249 (0.0213) 

Parameter c 

 ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.4732 (4.2175) -0.0575 (1.9262) 0.2640 (1.50503) 

(0.2,2.0,0.2) -1.2290 (1.8074) -0.7163 (0.5969) -0.7037 (0.8123) 

(0.3,2.0,0.3) -0.7874 ( 1.0200) -0.6787 (0.7803) -0.6569 (0.7127) 

(0.3,2.0,0.1) 0.0947 (5.3904) -0.6648 (1.1848) --0.2354 (2.1846) 

(0.8,2.0,0.1) -1.1227 (1.5925) -0.7149 (0.6458) -0.7023 (0.8461) 

Parameter k 

 ML Tukey’s Bisquare Huber 

(0.1,2.0,0.1) 0.7522 (3.1906) 0.0112 (0.0072) 0.0776 (0.0258) 

(0.2,2.0,0.2) 0.1934 (0.0923) 0.0844 (0.0332) 0.2331 (0.1117) 

(0.3,2.0,0.3) 0.2987 (0.7993) 0.0035 (0.2025) 0.0965 (0.0278) 

(0.3,2.0,0.1) 0.0621 (0.0219) -0.0179 (0.0033) 0.0513 (0.0109) 

(0.8,2.0,0.1) 0.0833 (0.0102) -0.0068 (0.0046) 0.0606 (0.0089) 

 

 

5. APPLICATION TO REAL DATA 

In this section, the data set given by Shao (2000) is used. This data set is used by Wang and Wen Lee (2011 and 

2014), to illustrate the Burr type III distribution and the ability of the M- estimation method and AM- estimation method. 

This data are the result of the study of influence of the proportion of toxicity of chromium in marine waters.  
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The data set, which is given in Table 4, contains 36 for chromium in marine waters. The box plot of the dataset 

given in Figure 2 displays a potential outlier in the data set. 

Table 4: Number Observed Effect Concentration (NOEC) Values for Chromium in Marine Water 

Marine Water 

2000, 12.59, 199.53, 4, 56, 263.03, 776.25, 1258.93, 3311.31, 39.81, 2630.27, 187.2, 89.13, 4.79, 8800, 10000, 1600, 

602.56, 2000, 199.5, 2.4, 728, 1122.02, 140, 177.83, 540, 1456, 2511.89, 1200, 478.63, 1174.89, 9.55, 3090.3, 602.56, 
1995.26, 210. 

 

 

              Figure 2: Box plot of the Chromium in Marine Water Data 

The data set is used to fit a MOEBIII distribution and to estimate the unknown parameters α, c and k, using                  

the ML and the M-estimator based on two different objective functions:Tukey’s Bisquare and Huber’s function. Table 5 

gives summary of fitting the MOEBIII distribution obtained from the ML, and the robust estimation methods for this data 

set. The 95% confidence intervals of α, c and k for ML and M-estimator with the two objective functions, Tukey’s Bisquare 

and Huber’s are shown in Table 5. In Table 5, one can see that, the confidence intervals of Tukey’s Bisquare are estimates 

are better than the other fitted obtained from the Huber and ML estimates. Also, it is found that Huber estimates is better 

than the ML estimates. 

Table 5: Parameter estimates, Standard Deviation (in Parentheses) and  

Confidence Intervals [in Parentheses] for the data Set 

Parameters Method 

 ML Tukey’s Bisquare Huber 

α 
5.1 (0.852) 

[3.43,6.77] 

5.9 (0.110) 

[5.784,6.215] 

5.6 (0.273) 

[5.065,6.135] 

c 
0.65 (0.0739) 

[0.40,0.795] 

0.71(0.035) 

[0.641,0.779] 

0.59 ( 0.0583) 

[0.476, 0.704] 

k 
7.8 (1.705) 

[5.66,11.14] 

8.9(0.098) 

[8.708,9.092] 

8.3 (0.197) 

[7.914,8.686] 

 

6. CONCLUSIONS 

The M-estimator method based on the quantile function by the Tukey’s Bisquare and Huber objective function to 

estimate the MOEBIII parameters for complete data with outliers are presented. The simulation results showed that the M-
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estimator method out performs the ML method regarding bias and mean square error. The real data showed that the M-

estimator method is suitable for estimating the MOEBIII parameters for complete data with outliers. Also, the confidence 

intervals of the MOEBIII parameters for M-estimator and ML are obtained using this data set. The confidence intervals of 

Tukey’s Bisquare estimates are comparably better than the other fitted, obtained from the Huber and ML estimates. The 

Huber estimates is also better than the ML estimates. In general, it is advised to use the MOEBIII distribution instead of 

using classical methods, when there are potential outliers in the data. 
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